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Semiclassical trajectory methods are tested for electronically nonadiabatic systems with conical
intersections. Five triatomic model systems are presented, and each system features two electronic
states that intersect via a seam of conical intersections~CIs!. Fully converged, full-dimensional
quantum mechanical scattering calculations are carried out for all five systems at energies that allow
for electronic de-excitation via the seam of CIs. Several semiclassical trajectory methods are tested
against the accurate quantum mechanical results. For four of the five model systems, the diabatic
representation is the preferred~most accurate! representation for semiclassical trajectories, as
correctly predicted by the Calaveras County criterion. Four surface hopping methods are tested and
have overall relative errors of 40%–60%. The semiclassical Ehrenfest method has an overall error
of 66%, and the self-consistent decay of mixing~SCDM! and coherent switches with decay of
mixing ~CSDM! methods are the most accurate methods overall with relative errors of;32%.
Furthermore, the CSDM method is less representation dependent than both the SCDM and the
surface hopping methods, making it the preferred semiclassical trajectory method. Finally, the
behavior of semiclassical trajectories near conical intersections is discussed. ©2005 American
Institute of Physics.@DOI: 10.1063/1.1829031#

I. INTRODUCTION

Conical intersections~CIs! are seams of intersections be-
tween electronic states that occur inF22 dimensions,1–3

whereF is the number of internal degrees of freedom. There
has been a renewed interest in CIs as recent experimental
evidence4–12 suggests confirmation of Teller’s early
prediction13 that ‘‘the transition probability for this type of
crossing~the CI! may become quite considerable.’’ Although
this idea played a pivotal role in many qualitative discussions
of organic photochemistry, recent theoretical and experimen-
tal work has allowed for a much better quantitative under-
standing. Using dimensional analysis, it has been shown that
local minima in the electronic energy gap~along some path!
are usually associated with nearby conical intersections.14

The ~re!emerging picture of dynamics involving coupled
electronic states is one in which a conical intersection~or
some set of geometries along a CI! plays a role analogous to
that of a conventional transition state for single electronic-
state reactions, and the lowest-energy point on the CI seam
in the former assumes a role almost15 as prominent as a
saddle point~the lowest-energy point on a conventional tran-
sition state dividing surface! for the latter. Therefore a vari-
ety of computational tools for characterizing and identifying
CIs and the topography of the surrounding coupled potential
energy surfaces using electronic structure techniques have
been developed.16–20 CIs have been observed or inferred
computationally for a variety of chemical systems from H3

~Refs. 21–24! to large biological molecules.25–33

A key concept that has guided much discussion in or-
ganic photochemistry has been the role of CIs in ‘‘funneling’’
probability amplitude from an excited electronic state to a
lower one, which is similar in some sense to a transition state
gating the flux from reactants to products. However, before
one pushes the analogy too far, it is useful to briefly contrast
CIs in multielectronic state reactions and transition state di-
viding surfaces in electronically adiabatic reactions. CIs are
of dimensionF22, whereas transition state dividing surfaces
are of dimensionF21. Thus transition state dividing sur-
faces can be defined such that all reactive trajectories must
cross them whereas only a vanishingly small fraction of tra-
jectories actually pass through a conical intersection. Even
with its higher dimensionality, only under limited circum-
stances does a transition state dividing surface and its imme-
diate neighborhood completely dominate the dynamics, and
often a careful treatment of the global potential energy sur-
face is required. A similar situation is likely for conical in-
tersections and coupled states, and the validation of practical
methods for simulating global coupled-states dynamics in
systems with conical intersections is the subject of this ar-
ticle. In addition to testing the validity of these simulation
methods, we use them to gain further insight into the impor-
tance of the CI and how it serves as a funnel.

The number of fully-dimensional dynamical studies in-
volving CIs ~or more generally, electronically nonadiabatic
chemistry! is limited, and one may cite the following two
challenges:~1! obtaining reliable potential energies and their
couplings~either by fitting an analytic set of potential energy
surfaces34–42 or by computing these energies on-the-fly,43–51

which is called direct dynamics!, and~2! accurately and ef-
a!Author to whom correspondence should be addressed. Electronic mail:
truhlar@umn.edu

THE JOURNAL OF CHEMICAL PHYSICS122, 044101 ~2005!

122, 044101-10021-9606/2005/122(4)/044101/16/$22.50 © 2005 American Institute of Physics

Downloaded 12 Jan 2005 to 160.94.96.169. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1829031


ficiently modeling the nuclear motion, where~2! requires a
practical means of accomplishing~1!. The first difficulty is
not considered in the present paper. It is assumed that a set of
potential energy surfaces and their couplings are readily
available or computable~which is not unreasonable in light
of recent progress in electronic structure theory!, and atten-
tion is focused on~2!.

The dynamics of systems with CIs has been studied us-
ing both accurate and approximate methods. Accurate quan-
tum mechanical dynamics calculations for systems with in-
tersections have been performed for triatomic systems52–62

~which have three vibrational degrees of freedom! and for
systems with more than three internal degrees of freedom
using simplified potential energy surfaces.63–69A two-mode
approximation may be made in which the remaining degrees
of freedom are ‘‘frozen,’’ and the resulting two-dimensional
problem is treated using wave packets.70 Several two-
dimensional model problems have also been studied using
wave packets.71–74 Two-dimensional models, though, how-
ever useful in examining properties of the CI, are incomplete
as descriptions of polyatomic systems, and the application of
full-dimensional quantum mechanics is limited by computa-
tional considerations.

Approximate methods, including those that are based on
semiclassical trajectories~i.e., that combine classical trajec-
tories with quantum mechanical ideas to strike a balance be-
tween accuracy and computational efficiency!, have also
been employed,55–58,63,75–78including direct dynamics stud-
ies with the goal of finding ‘‘representative’’ trajectories for
the decay mechanism.79 These studies provide qualitative in-
sights into reaction mechanisms and have been useful in ex-
plaining experimentally observed results. In general, the
semiclassical methods are not well-validated against more
accurate calculations, and quantitative interpretations cannot
be made with confidence.

We have previously tested and developed52–57,75,77,80–89

several methods designed for coupled-states dynamics that
are based on semiclassical trajectories90–94 and that are de-
signed to treat polyatomic systems in their full dimensional-
ity. Because the methods are based in part on classical me-
chanics, validation is required and is one goal of this paper.
We have recently tested87,89 several semiclassical trajectory
methods against accurate quantum dynamics using a series
of full-dimensional, two-state, atom–diatom model systems.
This set of benchmark test cases includes three systems82

with avoided crossings of the Landau–Zener–
Teller-type95–97 and two systems83 with extended regions of
weak coupling of the Rosen–Zener–Demkov-type.98–100 In
this work, the set of benchmark test cases is extended to
include systems with CIs.

The semiclassical trajectory methods that are considered
are based on independent classical trajectories. We pursue
methods whose computational cost is comparable with the
computational cost associated with single surface~classical!
molecular dynamics. Various more complicated methods in-
volving coupled trajectories and classical trajectories
‘‘dressed’’ with Gaussians have been developed and
applied.101–110In contrast to the methods studied here, many
of these methods have not been well-tested against accurate

quantal results for multidimensional systems, and the devel-
opment of efficient and well-validated methods for coupled-
states dynamics remains important.

A family of five model systems with CIs is presented in
Sec. II, full-dimensional quantum mechanical scattering cal-
culations are performed, and the quantal results are used to
test and validate several semiclassical trajectory methods.
Section III discusses various details of the quantum mechani-
cal and semiclassical calculations. Section IV presents com-
parisons of the accurate quantum mechanical and semiclas-
sical trajectory results, and Sec. V is a summary.

II. MODEL SYSTEMS WITH CONICAL INTERSECTIONS

The energetics of the triatomic two-state model systems
are expressed in terms a symmetric diabatic potential energy
matrix81,88

U5S U11 U12

U12 U22
D , ~1!

whereU11 andU22 are diabatic potential energy surfaces and
U12 is the diabatic~scalar! coupling. Adiabatic energies (V1

andV2) may be obtained by diagonalizingU, and the nona-
diabatic coupling vectord ~the off-diagonal matrix element
of the nuclear gradient operator in the electronic basis! may
be obtained fromU and its gradients with respect to the
nuclear coordinates.56 Note that when the system is defined
in the diabatic representation,d is fully determined by the
diabatic-to-adiabatic transformation, and fully-converged
quantum mechanical results are independent of which elec-
tronic representation is used.88,111–113Approximate dynami-
cal methods, such as many of the semiclassical trajectory
methods presented in Sec. III may not be formally indepen-
dent of the choice of electronic representation, and it is there-
fore useful to have the model PEMs defined for both the
adiabatic and diabatic representations.

When generating electronic energies using electronic
structure methods, adiabatic energies are typically computed;
the nonadiabatic couplingd is more difficult to compute, but
techniques exist.114 Once these adiabatic quantities are
known, it is not, in general, possible to transform to a strictly
diabatic representation,115–117i.e., a representation that com-
pletely removes the nonadiabatic couplingd, as there is
some ambiguity in the adiabatic-to-diabatic transformation
due to the ‘‘nonremovable’’ nonadiabatic coupling. One of-
ten defines a quasidiabatic basis, in which this nonremovable
coupling is minimized. The nonremovable coupling is likely
to be small compared to the removable coupling117 ~which is
singular at the CI!, and in practice the former is often ne-
glected. By defining the model systems presented here in
diabatic representation, the nonremovable coupling is rigor-
ously absent.

Five model systems with conical intersections~referred
to collectively as the family of MCH systems! are presented,
each of which models the atom–diatom scattering event

M* 1CH~v, j !→ H M1CH~v9, j 9!

H1MC~v8, j 8!, ~2!
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where the asterisk denotes electronic excitation, M, C, and H
are model atoms~in particular C does not model carbon!, and
v and j are vibrational and rotational quantum numbers for
the diatomic fragments.

The functional forms for the MCH PEMs are obtained
by modifying the family of previously presented MXH
systems,82 which themselves are loosely based on a model of
the LiFH system118 but with a smaller adiabatic energy gap
~;0.2 eV!. The MXH and LiFH systems feature an avoided
crossing, i.e., a seam of nonzero minimum adiabatic energy
gaps. For the five MCH PEMs,U11 andU22 are set equal to
those previously defined for the MXH systems.82 Briefly, U11

is the sum of a bound HC diatomic interaction~based on the
HF diatomic curve! and repulsive MC and MH interactions;
U22 is an extended LEPS function119–122 with parameters
similar to those for the LiFH system. The classical equilib-
rium geometry for the M1HC molecular arrangement is de-
fined as the zero of energy, and the energies of the classical
equilibrium geometries for the M*1HC and H1MC mo-
lecular arrangements are 0.76 and 0.67 eV, respectively, i.e.,
the classical ground-state reaction M1HC→H1MC is endo-
ergic by 0.67 eV, and the reaction M*1HC→H1MC is exo-
ergic by 0.09 eV. The C1MH molecular arrangement is not
accessible at the total energies considered in the present
study.

The masses of the M, C, and H model atoms are 6.047,
2.016, and 1.008 amu, respectively. With these masses, the
zero-point energies for the HC and MC diatoms are 0.304
and 0.148 eV, respectively.

The diabatic couplingU12 differs for each member of the
MCH family of PEMs and is obtained by modifying the
couplings used for the MXH cases. Specifically,

U125U128 @~RMC2RMC
0 !sina1~RHC2RHC

0 !cosa#, ~3!

whereRAB is the distance from atom A to atom B,U128 is the
functional form of the coupling used for the MXH systems,

U128 5A expF2S g12r1

b1
D 4

2S g22r2

b2
D 2G , ~4!

with

g15R8 cosf2r HC sinf, ~5!

g25R8 sinf1r HC cosf, ~6!

RMC
0 53.14a0 , RHC

0 52.08a0 , r153.0a0 , r251.3a0 , b1

53.0a0 , f5215.7°, and

R85 1
3A6RMC

2 13RMH
2 22RHC

2 . ~7!

The remaining parameters (a,A,b2) were varied to create
five model PEFs labeled SL, WL, SB, WB, and TL; the
values of the parameters are summarized in Table I. The

parameterizations are given two-letter labels as follows: The
first letter is W, S, and T forA50.09, 0.30, and 0.45 eV,
respectively, and the second letter is L and B forb250.5 and
1.0a0 , respectively. The parameterizations also differ ina,
but an additional letter is not employed to indicate this dif-
ference. A similar scheme was used to label the MXH
systems,82 where W, S, L, and B were chosen to stand for
‘‘weak,’’ ‘‘strong,’’ ‘‘localized,’’ and ‘‘broad.’’ Thus, for ex-
ample, SB denotes strong coupling over a broad region.

The diabatic energies along the collinear minimum en-
ergy path ofU22 are plotted in Fig. 1. All five MCH systems
have the sameU11 andU22 surfaces; the SL, WL, SB, WB,
and TL parameterizations differ in the shape and magnitude
of their diabatic couplingU12 as indicated in the figure. Also
shown are the zero-point energies of the asymptotic diatomic
fragments. Contour plots of the adiabatic and diabatic ener-
gies along with the magnitude of the nonadiabatic coupling
are shown for the SL parameterization in Fig. 2.

Conical intersections occur at geometries where

U115U22 ~8!

and

U1250. ~9!

Each of these conditions is satisfied in a two-dimensional
surface~for triatomic systems such as MCH!, and the inter-
section of these surfaces forms~or, more exactly, may form!
a one-dimensional seam of conical intersections. For the
model MCH PEMs, the seam of CIs lies approximately in
the direction of the MH stretching motion~or equivalently,
along theM–C–H bending motion!.

Conical intersections may be characterized123,124 by
identifying the two mass-weighted unit vectorsĝ and ĥ cor-
responding to the vectors

FIG. 1. Diabatic energies~thick solid lines! along the collinear minimum
energy paths of U22 . The five MCH PEMs have different coupling surfaces
U12 ~thin solid lines!, as indicated. Also shown are the zero-point energies of
the asymptotic diatomic fragments~diamonds!, and the total scattering en-
ergy ~think dashed line!.

TABLE I. Parameters used in the diabatic coupling for the five MCH model
systems.

Parameter WL WB SL SB TL

a ~deg! 45 45 45 45 85
A (eV) 0.09 0.09 0.30 0.30 0.45
b2 (a0) 0.5 1.0 0.5 1.0 0.5
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g[gĝ5¹~V22V1!, ~10!

h[hĥ5~V22V1!d ~11!

computed at some geometry along the CI, whereg5ugu, and
h5uhu. For the model PEMs, the geometry of the minimum-
energy CI is at 180° for theM–C–H bond angle~collinear!,
and the energy of the CI is fairly constant as a function of
bond angle from 100° to 180°. Over this range of bond
angles, the unit vectorsĝ and ĥ both approximately corre-
spond to an H–C stretching motion (ĝ"ĥ'0.99). The plane
defined byĝ and ĥ is called theg–h plane or the ‘‘intersec-
tion coordinate subspace,’’123 and an orthonormal set of unit
vectors ĝ8 and ĥ8 ~called ‘‘intersection adapted
coordinates’’124! may be obtained by orthoganalizingĝ andĥ
within theg–h plane. We do this by settingĝ85ĝ and rotat-
ing ĥ. For the MCH systems,ĥ8 approximately corresponds
to an M–C stretching motion. Nuclear motions perpendicular
to the intersection coordinate subspace preserve the conical
intersection, whereas motions within the plane destroy either
one or both of the conditions in Eqs.~10! and~11! and break
the degeneracy.

Plots of the diabatic energies as functions ofRHC and
RMC for the SL parameterization are shown in Fig. 3. The
CIs for these model systems are of the ‘‘sloped’’ type.123 @A
‘‘peaked’’ CI would have surfaces similar to those in Fig.
3~a! along bothĝ8 andĥ8.# Yarkony124 has found the follow-
ing quantities to be useful in characterizing CIs:

dgh
2 5g21h2, ~12!

Dgh5~g22h2!/~g21h2!, ~13!

sg5s"ĝ8/g, ~14!

sh5s"ĥ8/h, ~15!

where

s[¹~V11V2!. ~16!

Nonzero values forsg andsh describe how the cone is tilted
away from vertical, and a nonzero value ofDgh indicates that
the cone does not have cylindrical symmetry. Values of the
parameters defined by Eqs.~12!–~15! along with the energies
and geometries along the CIs for the five MCH systems are
presented in Table II. There is some diversity in the five
systems, but all five systems are sloped cones with tilt pa-
rameters 0.6–1.2 and are asymmetric. The parameters ‘‘pre-
dict’’ that these cones will be less efficient than upright cones
in trapping and disposing of the nuclear wave packet. We
will return to this discussion in Secs. III.A and IV.C.

FIG. 2. Contour plots for the SL parameterization of collinear MCH. The
contour spacing is 0.25 eV for~a! V1 , ~b! V2 , ~c! U11 , ~d! U22 , and 0.025
eV for ~f! U12 . The lowest-energy contour is 0.0 eV for panels~a! and ~c!
and 0.5 eV for panels~b! and ~d!. In panel ~f!, the U1250 contour is a
straight line. Panel~e! shows the magnituded of the nonadiabatic coupling,
and contours are shown for 0.015, 0.15, 1.5, and 15a0

21.

FIG. 3. Diabatic energies along~a! RHC and ~b! RMC through the conical
intersection at aM–C–H bond angle of 120°. In panel~a!, RMC is fixed at
1.94a0 , and in panel~b!, RHC is fixed at 3.00a0 .

TABLE II. CI parameters for the MCH systems.

Parametera WL WB SL SB TL

dgh (a0 amu1/2) 0.00177 0.00172 0.00172 0.00194 0.00160
Dgh 0.289 0.321 0.355 0.297 0.461
sg 0.817 0.814 0.796 0.797 1.18
sh 0.767 0.849 0.901 0.648 0.600
ECI

b ~eV! 0.57 0.57 0.57 0.57 0.47
RHC (a0) 1.94 1.94 1.94 1.94 1.95
RMC (a0) 3.00 3.00 3.00 3.00 3.13
RMH (a0) 4.94 4.94 4.94 4.94 5.08

aThe parametersdgh , Dgh , sg , andsh were evaluated along the seam of CIs
with the M–C–H bondangle fixed at 120°. The remaining parameters were
evaluated at collinear geometries, which are the lowest-energy geometries
along the seam of CIs.

bECI5U115U225V15V2 at the CI.

044101-4 A. W. Jasper and D. G. Truhlar J. Chem. Phys. 122, 044101 (2005)

Downloaded 12 Jan 2005 to 160.94.96.169. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



In addition to the five parameterizations of the newly
presented MCH system, we also consider three previously
presented MXH parameterizations82 ~labeled SL, SB, and
WL! and two previously presented YRH parameterizations83

~labeled 0.1 and 0.2!. The YRH system features noncrossing
diabatic surfaces and weak coupling. Taken together, the set
of MCH, MXH, and YRH model potential surfaces provides
a qualitatively varied set of PEMs with which to study nona-
diabatic dynamics and validate approximate semiclassical
trajectory methods. Fully converged quantum mechanical
calculations have previously been carried out for the MXH
~Ref. 82! and YRH ~Ref. 83! model systems and are pre-
sented for the MCH systems in Sec. III.

A set of six observables for the atom–diatom scattering
event is considered:PR , the probability of de-exciting and
undergoing an atom-exchange~i.e., reacting!; PQ , the prob-
ability of de-exciting nonreactively~quenching!; PN[PR

1PQ , the total probability of de-excitation;FR[PR /PN ,
the fraction of de-excited trajectories that react;Eint8 , the
average final internal~rovibrational! energy of the de-excited
reactive diatomic fragment; andEint9 , the average final inter-
nal ~rovibrational! energy of the de-excited nonreactive di-
atomic fragment. The diatom is initially in its ground vibra-
tional state, and the total angular momentum is zero. The
total energyE ~with respect to the classical minimum of the
ground-state reactants! and initial rotational statej of the
diatomic molecule are varied, and the initial conditions are
labeled (E, j ), whereE is in eV. Final rovibrational energies
are always measured with respect to classical equilibrium.

III. CALCULATIONS

III.A. Quantum mechanical calculations

Six-dimensional quantum mechanical calculations~three
internal vibrations and three overall rotations! were carried
out using the outgoing wave variational principle,125–129 as
implemented in the computer codeVP,130 and using the basis
sets and numerical parameters previously used to obtain con-
verged results for the MXH systems.82 Calculations were
carried out for all five MCH parameterizations at seven total
energies fromE51.07 to 1.13 eV, where the zero of energy
is at the classical minimum of the ground-state HC curve
when HC is far from M. Convergence was demonstrated by
comparing results from two calculations that differ in the
number of basis functions~having 16614 and 20287 basis
functions, respectively! and in their numerical parameters
~see Ref. 82 for details!. For example, atE51.10 eV, there
are 3 open channels for M*1HC, 23 open channels for
M1HC, and 23 open channels for H1MC; thus there are
1225 unique state-to-state transition probabilities~for zero-
total-angular-momentum atom-diatom collisions neglecting
spin, a state is the same as a channel and is specified by a
unique set of rovibrational quantum numbers and a label
identifying molecular arrangement!. For the SL parameter-
ization at 1.10 eV, 96% of the transition probabilities are
converged to better than 1%~these transition probabilities
have an average value of 0.02!, 3.5% are converged to be-
tween 1% and 5%~with an average value of 231024), and
only three transition probabilities differ by more than 5%

~with an average value of 1025). Similar convergence is ob-
tained for all five MCH parameterizations at all of the scat-
tering energies considered. The quantum mechanical results
for the six observables discussed in Sec. II are converged to
better than 1%.

The quantum mechanical calculations were performed in
the diabatic representation, thus avoiding complications as-
sociated with the geometric phase effect131–137 when the
adiabatic representation is used.

Quantum mechanical results often show significant de-
pendence on total energy, even where the results of classical
calculations do not. The quantum mechanical results are
therefore averaged over energies from 1.07 to 1.13 eV to
obtain average results for an interval centered at 1.10 eV.
Quantum mechanical results for the SL model system are
shown as a function of energy in Table III. The quantum
results change significantly over this range, but the average
values are close to those obtained at 1.10 eV. Similar energy
dependencies were obtained for the other MCH parameter-
izations, and the average quantum mechanical results for the
SL, SB, WL, WB, and TL parameterizations are summarized
in Table IV.

We note that for the cones and scattering conditions con-
sidered here, only 29%–63% of probability density is de-
excited by the cone, and the quantal results forPN ~de-
excitation! and FR ~branching! may be roughly inversely
correlated with the tilt of the cones25sg

21sh
2. A similar ~but

less strongly-correlated! relationship exists between the
asymmetry of the coneDgh and the observablesPN andFR .
These relationships agree with earlier speculations123 and
calculations124 that cones that are more upright and symmet-
ric are more efficient at de-exciting the system. Furthermore,

TABLE III. Quantum mechanical results for the SL PEM for the M*1HC
(v50, j 50) collision.

E, eVa PR PQ PN FR Eint8 , eV Eint9 , eV

1.07 0.13 0.52 0.65 0.20 0.21 0.97
1.08 0.39 0.41 0.80 0.49 0.19 0.96
1.09 0.19 0.43 0.62 0.30 0.20 0.95
1.10 0.24 0.32 0.55 0.42 0.22 0.95
1.11 0.20 0.28 0.48 0.42 0.23 0.95
1.12 0.25 0.29 0.53 0.46 0.22 0.89
1.13 0.27 0.27 0.54 0.49 0.27 0.97

average 0.24 0.36 0.60 0.40 0.22 0.95

aTotal energy with respect to the classical minimum of the isolated HC
curve.

TABLE IV. Quantum mechanical results averaged over seven total energies
from 1.07 to 1.13 eV for the five MCH parameterizations.

Observable WL WB SL SB TL

PR 0.46 0.45 0.24 0.15 0.13
PQ 0.07 0.17 0.36 0.14 0.28
PN 0.53 0.63 0.60 0.29 0.41
FR 0.87 0.72 0.40 0.53 0.32
Eint8 , eV 0.22 0.22 0.22 0.25 0.27
Eint9 , eV 0.95 0.94 0.95 0.76 0.83
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we find that these properties also enhance reactivity for the
MCH systems.

III.B. Semiclassical trajectory calculations

Many semiclassical trajectory methods have been pro-
posed, and we consider only those semiclassical trajectory
methods that are well tested and that are based on the inde-
pendent trajectory approximation, where an ensemble of tra-
jectories is used to model the system and each trajectory
evolves independently of the other trajectories in the en-
semble.

The electronic motion is modeled using the ‘‘classical
path’’ approximation for calculating the electronic state
populations.90,94,138,139Briefly, the time-dependent electronic
Schrödinger equation is solved along some classical trajec-
tory. The solution for each trajectory may be represented in
terms of the time evolution of an electronic state density
matrix r, wherer11 is the electronic state population of state
1, for example, andr12 is an electronic state coherence. The
time evolution of r depends on the nuclear velocity, the
nonadiabatic vector couplingd, and the adiabatic energies
~for the adiabatic representation! or on the diabatic energies
~for the diabatic representation!.

Semiclassical trajectory methods may be characterized
by their treatment of the nonadiabatic transition. In the sur-
face hopping approach,85,90,138–141trajectories evolve on the
diagonal potential energy surfaces~e.g., the adiabatsV1 and
V2 or the diabatsU11 and U22, for two-state systems!, and
this single-surface propagation is interrupted by stochastic
surface switches or hops. At a hopping event, the trajectory
is placed on a different potential energy surface~if the tran-
sition is energetically allowed, as discussed below!, an ad-
justment to the nuclear kinetic energy is made to conserve
total energy, and propagation is continued.

Several schemes for computing the probability of hop-
ping have been suggested. Using Tully’s fewest-switches
~FS! prescription139 ~sometimes called molecular dynamics
with quantum transitions or MDQT!, the hopping probability
is obtained by monitoring the relative change in the classical
path electronic state populationsr and minimizing surface
switches, as discussed elsewhere.139 As in an earlier
method,138 hopping decisions are allowed all along the tra-
jectory ~not just at localized seams! at small time intervals
~which may be taken to be the time-step of the integrator!.

The FS prescription attempts to maintain electronic-
nuclear self-consistency such that the fraction of trajectories
in each electronic state matches the classical path electronic
state populations. For many systems, however, the FS pre-
scription may call for a surface hop to a higher-energy elec-
tronic state such that system is not allowed to hop by con-
servation of energy.83,84,142,143These so-called ‘‘frustrated’’
hops destroy the electronic-nuclear self-consistency, and
their treatment can have a large effect on the results of a
surface hopping simulation.83,84 It has been suggested that
these hops be ignored143 ~denoted by ‘‘1’’ ! or that the
nuclear momentum along the nonadiabatic coupling vector
be reflected80,142,144~denoted by ‘‘2’’ !. We have previously
tested83 these two approaches, along with several other ap-
proaches, and our studies led us to develop a method in

which somefrustrated hops are allowed to hop by incorpo-
rating time uncertainty into the hopping times84 ~we call this
method FS with time uncertainty or FSTU!. Those hops that
are not allowed by time uncertainty may be treated using
either the1 or 2 prescriptions. We have also developed85 a
hybrid approach in which the1 or the2 prescription is used
based on the gradient of the electronic surface toward which
the trajectory is hopping~called the¹V method!. We have
previously shown84,85 that the FSTU¹V method is more ac-
curate than several other methods tested. In this work, we
consider the FSTU¹V method along with the FS2 and FS1
methods.

Also considered in the present study is the surface hop-
ping scheme of Parlant and Gislason,145 which we call the
exact-complete passage~ECP! method. In this method, hop-
ping decisions are allowed only at locations along the clas-
sical trajectory where the magnitude of the nonadiabatic cou-
pling vectord is a maximum, and the hopping probability is
determined by integrating the total change in the classical
path electronic state populations between local minima in the
magnitude ofd. At local minima in d, the electronic state
density r is reinitialized. When classically forbidden hops
are encountered, the1 prescription is used. This method
attempts to incorporate an explicit treatment of coherence
and decoherence into trajectory surface hopping.

Another general approach to treating nonadiabatic events
within the independent trajectory ensemble formalism in-
volves propagating trajectories on average potentials, which
are linear combinations ofV1 andV2 or U11, U12, andU22.
We refer to these methods as self-consistent potential~SCP!
methods. Several SCP methods have been proposed.146–152

The semiclassical Ehrenfest~SE! method146 is a simple SCP
method in which trajectories propagate on a linear combina-
tion of the potential energy surfaces weighted by their clas-
sical path electronic state populations. For example, if the
electronic state population is equally distributed in two elec-
tronic states, the trajectory propagates on a surface that is the
arithmetic average of the two surfaces. Although this ap-
proach is formally appealing, the mean-field approximation
suffers from serious problems. When the average potential is
employed, trajectories may~and in general do! finish the
simulation in mixed final states, giving internal and transla-
tional energies that do not correspond to any single isolated
product. Furthermore, SE trajectories are not able to explore
processes associated with small electronic probabilities, as
every trajectory in the ensemble will be determined mainly
by the potential energy surface associated with the high-
probability event.81,94 Because of the mixed state problem,
there is some ambiguity in how to perform the final state
analysis. In this work, we use the histogram method.55

The SE electronic density matrix along a given trajectory
does not collapse to a pure state or an incoherent mixed state,
and this may be interpreted86,89 as a problem with the semi-
classical treatment of decoherence within the SE formalism,
i.e., a SE trajectory is fully coherent and a proper treatment
requires some decoherence. We identify two sources of de-
cay of the electronic state density matrix: dephasing, which
is the tendency of the off-diagonal elements to go to zero,
and demixing or decay of mixing~DM!, which is the algo-
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rithmic need for the SE trajectory~which represents a mix-
ture of electronic states! to demix to an ensemble of single-
surface trajectories representing physical product states.

A general set of DM equations~which also include
dephasing! was obtained86,153 by requiring first-order decay
of the electronic state amplitudes and conservation of energy,
angular momentum, and electronic phase angle. Briefly, the
DM formalism collapses each mixed SE-like trajectory con-
tinuously toward some pure stateK. The decoherent stateK
is determined stochastically using equations analogous to
those used for the hopping probability in the fewest-switches
surface hopping method. The remaining parameters to be
specified are:~1! the directionŝ in which energy is removed
or deposited as the system demixes, and~2! the demixing
time t, where 1/t is the rate at which the system demixes to
a pure state. We defineŝ such thatŝ points along the nona-
diabatic coupling vectord when the magnitude ofd is large,
and ŝ points along the vibrational nuclear momentum other-
wise. The optimal semiclassical rate of decoherence~or in
this context, demixing! is not known and deserves continued
study.154,155 We have tested86,87,89 a variety of simple pre-
scriptions fort, and we have taken~for a two-state system!
the following expression as a reasonable one:

t5
\

uE12E2u S C1
E0

~P"ŝ!2/2m D , ~17!

whereEi5Vi or Uii for the adiabatic and diabatic represen-
tations, respectively,P is the nuclear momentum,m is the
reduced mass of the system~all coordinates are scaled to the
same reduced mass when applying this formula!, andC and
E0 are parameters. We have previously suggested87,89 C
51, andE050.1Eh (1 Eh527.211 eV), and we have shown
that the results are not overly sensitive to these parameters
provided that thet is large enough. Therefore in the present
work we have used these values for all DM calculations.

We have developed three DM methods with varying de-
grees of coherence.86,89,153 The natural decay of mixing153

~NDM! method artificially enhances decoherence and will
not be considered in this paper. The self-consistent decay of
mixing86 ~SCDM! and coherent switches with decay of
mixing89 ~CSDM! methods have both given good results,
and both will be tested here. The SCDM method is ‘‘locally
coherent’’ in the sense that no attempt is made to preserve the
coherent motion over extended regions of the trajectory. The
CSDM method is more coherent that the SCDM method.
Specifically, in the CSDM method, the fully coherent SE
equations of motion are used to compute the switching prob-
ability of the decoherent stateK. Between regions of strong
coupling, the electronic state density matrixr is partially
collapsed to a dynamically decayed electronic state density
matrix ~and not necessarily to a pure state!. See Ref. 89 for
more details.

Semiclassical trajectory calculations consisting of 5000
trajectories were carried out using theNAT computer code.156

Our implementation of the various semiclassical methods,
the selection of initial conditions, the analysis of the final
products, and additional computational details are described
elsewhere.55,56,86

Table V summarizes the semiclassical methods tested in
this paper.

III.C. Choice of electronic representation

The generalized Born–Oppenheimer approximation in-
volves separating a subspace of electronic states from the
rest. Having made this separation, the results should depend
on the choice of subspace but not on the electronic basis with
which it is spanned, i.e., no result should depend on whether
the diabatic or adiabatic representation is used to represent
the electronic states. Accurate quantum mechanical results
are therefore independent of the choice of electronic repre-
sentation; however, many approximate methods~including
several of the semiclassical trajectory methods discussed
above! do depend on the choice of electronic representation.
Given a diabatic representation in which the electronic state
coupling due to nuclear motion is either zero by definition
~as in the systems studied here! or may be assumed to have a
negligible effect~which is a reasonable assumption for real
molecular systems, since these couplings can be completely
removed by diabatic transformations in the vicinity of inter-
sections and can be shown to have relatively small effects in
regions where they cannot be removed!,88,115,117,157–160it is a
straightforward exercise to transform to an adiabatic repre-
sentation, and so one may carry out the dynamics calcula-
tions in either representation. Therefore it is of considerable
practical interest to consider the accuracy of the various
semiclassical methods in both representations. The only
semiclassical method~of the seven tested in the present work
and summarized in Table V! that is formally independent of
electronic representation is the SE method.146 Surface hop-
ping methods are often very dependent on representation,83,87

and the decay of mixing methods are less dependent.86,87,89

An important question in developing and applying semi-
classical theories is therefore: Which representation is the
most accurate for a given system, set of conditions, and
semiclassical theory? Actually, the situation is more compli-
cated, as any single system may have certain regions where
the adiabatic representation is preferred and other regions

TABLE V. Semiclassical trajectory methods tested in this paper.

Method Reference Description

ECP 145 The ‘‘exact complete passage’’ surface hopping
method of Parlant and Gislason

FS1 139 Tully’s fewest switches surface hopping method,
where the plus indicates that frustrated hops are
ignored

FS2 142 Tully’s fewest switches surface hopping method,
where the minus indicates that at frustrated hops the
nuclear momentum is reflected along the non-
adiabatic coupling vector

FSTU¹V 84, 85 The fewest switches with time uncertainty method,
where the¹V indicates that frustrated hops are
treated by the gradV method

SE 146 The semiclassical Ehrenfest self-consistent potential
~SCP! method

SCDM 86 The self-consistent decay of mixing SCP method
CSDM 89 The coherent switches with decay of mixing SCP

method
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where the diabatic representation is preferred, and this diver-
sity within a given system is more likely to be encountered in
complex applications of practical interest than in low-
dimensional cases where testing against accurate quantal re-
sults is feasible. Thus, not only do we wish to find out which
representation leads to more accurate results, we also want to
find semiclassical methods that do not depend sensitively on
the choice of representation. Such methods are in some sense
closer to accurate quantum dynamics, and they are more
likely to lead to accurate results for complex systems.

It has been suggested94 that the adiabatic representation
is the ideal representation for surface hopping. The argument
may be presented by considering a two-state example, where
U11 and U22 are the diabatic surfaces,V1 and V2 are the
adiabatic surfaces, andV1,V2 . When the coupling is non-
zero, the diabatic energies are always between the adiabatic
energies. Trajectories running on the adiabatic surfaces are
able to approximate the diabatic energies in some average
sense~not the self-consistent SE average, but an algorithm-
dependent ensemble average! by hopping back and forth,
i.e., by having higher energies for some portion of the trajec-
tory and then having lower energies. Diabatic trajectories,
however, cannot approximate the adiabatic energies on aver-
age by hopping between the diabatic surfaces becauseU11

andU22 are both always less thanV2 and always greater than
V1 . Another way to say this is that the best representation for
surface hopping is the representation with the larger energy
gap. This argument is physically reasonable, but for systems
with conical intersections it might run counter to another
kind of intuitive argument, namely that one should carry out
the calculation in the representation that provides the best
zero-order picture of the dynamics. Trajectories passing pre-
cisely through a conical intersection would be expected to be
perfectly diabatic in zero order,71 and although only an in-
finitesimal fraction of the trajectories will actually pass
through the intersection, many trajectories will come close to
it. And yet trajectories far from the intersection are expected
to be adiabatic in zero order, so ultimately it is a system-
dependent quantitative issue.

By comparing accurate quantum mechanical and semi-
classical trajectory results, we have previously observed57,81

that the diabatic representation may lead to more accurate
semiclassical results for some systems, even systems without
CIs. The Calaveras County~CC! criterion was developed57,81

for estimating which representation is likely to be more ac-
curate in the absence of quantum mechanical results. The CC
representation is the representation in which surface hopping
trajectories attempt the fewest number of hops, as estimated
from a small set of calculations in both the adiabatic and
diabatic representations. The CC criterion was previously
shown57 to successfully predict the most accurate represen-
tation for several test cases more often than several other
criteria, and in subsequent work86–89we found that it contin-
ued to predict correctly, more often than not, which of the
two representations~diabatic or adiabatic! would lead to
more accurate results for a variety of semiclassical methods.

One may motivate the use of the CC representation for
semiclassical trajectories as follows. Although it is true that

the average value of the potential energy experienced by an
adiabatic surface hopping trajectory may more closely ap-
proximate the average diabatic energies than vice versa,
adiabatic surface hopping trajectories never propagate on
that average surface. They propagate on one or the other of
the two adiabatic surfaces, which themselves do not re-
semble the diabatic surfaces any more than the diabatic sur-
faces resemble the adiabatic surfaces. Adiabatic nuclear mo-
tion, therefore, does not approximate diabatic nuclear motion
any better than diabatic motion approximates adiabatic mo-
tion. Furthermore, surface hops involve a somewhat arbitrary
set of decisions about how to conserve total energy and suf-
fer from self-consistency-violating frustrated hops. We con-
clude that the best representation is the representation in
which the uncoupled surfaces~either adiabatic or diabatic!
are the best approximation to the fully coupled system, i.e., if
the diabatic surfaces are less coupled than the adiabatic sur-
faces, then the diabatic surfaces are a better first-order pic-
ture of the dynamics, fewer hops are required, and the diaba-
tic representation is preferred. Tully has also suggested that
the most accurate representation is the one that minimizes
surface hops.94 Furthermore the model that systems decohere
to the electronic representation that is least coupled by the
nuclear motion is consistent with quantum information
theory, which states that the quantum subsystem decays to
the eigenstates of an operator that commutes with the inter-
action between the quantal and classical subsystems.161

We have previously81 identified the CC representations
for the MXH and YRH test cases, and the CC representation
and various hopping statistics for the MCH, MXH, and YRH
systems are summarized in Table VI. All three of the YRH
test cases strongly prefer the adiabatic representation, and
three of the nine MXH cases prefer the diabatic representa-
tion. For the MCH cases, the adiabatic representation is pre-
ferred for the SB parameterization, whereas the diabatic rep-
resentation is preferred~to varying degrees! for the
remaining MCH parameterizations.

IV. RESULTS AND DISCUSSION

IV.A. Calaveras Country representation

ECP, FS1, FS2, FSTU¹V, SE, SCDM, and CSDM
semiclassical trajectory calculations were carried out for all
five MCH test cases to obtain the six observables discussed
in Sec. II. In all cases errors are computed by comparing
semiclassical calculations at 1.10 eV to the average quantum
mechanical results in Table IV. Relative errors were com-
puted and averaged over the five test cases as discussed
elsewhere,89 and results for the adiabatic~A!, diabatic~D!,
and CC representations are summarized in Table VII. As dis-
cussed above, the SE method is formally independent of
electronic representation. For all of the remaining methods
except the ECP method, the D representation is more accu-
rate overall than the A representation, and the CC represen-
tation is more accurate overall than either the A or D repre-
sentations. There is a total of 30 observables~six observables
for each of the five cases!, and for the ECP, FS1, FS2,
FSTU¹V, SCDM, and CSDM methods the CC representa-
tion predicts the most accurate representation for 17–20 of
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these 30 observables. For all the methods except the ECP
method, the CC criterion predicts the most accurate represen-
tation overall~i.e., averaged over all six observables! for all
five cases. We conclude that the CC representation is the
most accurate representation for both surface hopping and
decay of mixing calculations, even though surface hopping
information is used as the criterion.

Average relative errors for the MXH and YRH systems
as well as for the MCH systems are summarized in Table
VIII. Errors for the YRH systems are taken directly from

Ref. 89. Errors for the MXH systems were recomputed using
the accurate quantum mechanical data from Ref. 82, and
these errors differ from those presented elsewhere89 because
of a typographical error in the accurate quantal data used in
Ref. 89. The error affected only one of the nine MXH cases.

As previously reported,81 the CC representation is al-
ways the A representation for the YRH systems, and for these
systems, the CC and A representations are systematically
more accurate than D representation. For the MXH systems,
the A representation is the least accurate representation for

TABLE VI. Hopping statistics per trajectory.a

System U12
b I.C.c CC rep

Successful hops Frustrated hops Total hopping attempts

Adiabatic Diabatic Adiabatic Diabatic Adiabatic Diabatic Ratio A/D

YRH 0.1 ~1.10,0! A 0.16 1.9 0.29 8.0 0.45 10. 0.045
0.2 ~1.10,6! A 0.18 1.0 0.11 2.6 0.29 3.6 0.079

~1.02,0! A 0.050 0.38 0.078 1.8 0.13 2.2 0.058
MXH SB ~1.10,0! A 2.6 5.0 1.6 5.9 4.2 11 0.39

~1.10,1! A 2.6 4.8 1.7 6.0 4.3 11 0.40
~1.10,2! A 2.6 4.9 1.7 6.2 4.3 11 0.39

SL ~1.10,0! A 2.3 1.8 1.1 2.5 3.4 4.3 0.79
~1.10,1! A 2.2 1.8 1.2 2.5 3.4 4.4 0.78
~1.10,2! A 2.2 1.8 1.1 2.4 3.3 4.3 0.78

WL ~1.10,0! D 2.4 0.35 0.44 0.67 2.8 1.0 2.8
~1.10,1! D 2.3 0.37 0.46 0.70 2.7 1.1 2.5
~1.10,2! D 2.1 0.35 0.42 0.65 2.6 1.0 2.6

MCH WL ~1.10,0! D 3.2 0.13 0.089 0.10 3.3 0.23 14
WB ~1.10,0! D 3.1 0.69 0.14 0.65 3.2 1.3 2.4
SL ~1.10,0! D 3.3 0.91 0.41 0.83 3.7 1.7 2.1
SB ~1.10,0! A 3.1 3.8 0.43 3.6 3.5 7.4 0.47
TL ~1.10,0! D 3.5 2.0 0.76 1.4 4.3 3.4 1.2

aObtained using the FSTU¹V method. Similar results were obtained using the FS1 and FS2 methods. The CC
representation predicted by the ECP method agrees with those in the table.

bCoupling parameterization. See Sec. II for details.
cInitial conditions (E, j ), whereE is the total energy in eV, andj is the initial rotational state of the diatom. See
Sec. III for details.

TABLE VII. Relative errors~%! averaged over the five MCH cases.

Method Repa PR PQ PN FR Eint8 Eint9 Probsb Fractsc Overalld

ECP A 118 43 52 49 24 16 71 29 51
D 98 152 54 39 22 8 101 23 62

CC 108 119 49 43 24 4 92 24 58
FS2 A 116 76 58 38 19 13 84 24 54

D 74 70 64 21 21 11 69 17 43
CC 91 45 60 21 21 10 65 18 41

FS1 A 119 64 58 41 20 16 80 26 53
D 76 68 63 17 24 8 69 16 43

CC 88 44 58 20 24 6 63 17 40
FSTU¹V A 122 81 52 48 20 13 85 27 56

D 66 81 57 18 22 9 68 16 42
CC 81 48 52 21 23 9 60 18 39

SE A/D/CC 118 138 42 45 45 10 100 33 66
SCDM A 56 111 37 18 25 17 68 20 44

D 42 49 42 15 23 21 45 20 32
CC 47 42 41 12 24 21 43 19 31

CSDM A 51 98 39 19 24 19 63 21 42
D 40 59 40 17 22 20 47 20 33

CC 46 56 40 14 23 20 47 19 33

aElectronic representation; A5adiabatic, D5diabatic, and CC5Calaveras County.
bAverage of the errors forPR , PQ , andPN .
cAverage of the errors forFR , Eint8 , andEint9 .
dAverage of the errors for all six observables.
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most surface hopping methods, the D representation is the
most accurate representation, and the CC representation
gives intermediate results. For the decay of mixing methods,
all three representations give similar results for the MXH
systems. Because the results are similar for the A and D
representations for the MXH cases and the CC representation
is the A representation for all of the YRH cases, the MCH
cases provide a useful test of the CC criterion; as discussed
above, the CC criterion is found to successfully predict the
most accurate representation for the MCH systems.

Based on the YRH, MXH, and MCH results, one cannot
conclude that the A representation isalways the preferred
representation for surface hopping or more generally for
semiclassical trajectories. It is true, however, that when the A
representation is preferred, errors using the D representation
are typically larger than errors obtained using the A represen-
tation when the D representation is preferred, i.e., on aver-
age, using the A representation exclusively gives smaller er-
rors than using the D representation exclusively. Therefore,
in the total absence of information about a system, the A
representation may be preferred. However, with a small
amount of dynamical knowledge~obtained by running a
small set of trajectories! one may compute the CC represen-
tation, which is found to be systematically more accurate
than either the A or D representations, both in this study and
previous work.86–89 It is also reasonable to expect that for
some systems and under certain conditions~such as high-
energy collisions91,162,163!, the D representation may be sig-
nificantly more accurate than the A representation.

IV.B. Representation independence

Although the CC representation is the preferred repre-
sentation for semiclassical trajectories, it is likely that many

large systems may defy a one-representation description.
Therefore, as noted above, one criterion for a successful
semiclassical trajectory method is reduced dependence on
the choice of electronic representation. For the surface hop-
ping methods, the overall relative errors in the A and D rep-
resentations differ on average by;30% for MXH and
;25% for MCH. For the YRH cases, which are predicted to
be strongly adiabatic by the CC criterion~see Table VI!, the
adiabatic and diabatic representations differ by factors of
4–10 for the surface hopping methods.

As noted above, the SE method is formally independent
of electronic representation. Therefore, one may expect that
methods based on the SE method~e.g., the SCDM and
CSDM methods! will be less dependent on representation
than surface hopping methods. For the MXH cases, the
SCDM and CSDM methods give nearly identical errors in
the A and D representations, and there is larger representa-
tion dependence for the MCH systems~30% and 20% for
SCDM and CSDM, respectively!. For the YRH cases, how-
ever, the SCDM and CSDM methods have much better rep-
resentation independence than the surface hopping methods
and have errors that differ by 80% and 50%, respectively.
The most representation-independent method overall~aside
from the SE method which has perfect representation inde-
pendence! is the CSDM method. The CSDM method, in fact,
was designed89 to better reflect the true density matrix evo-
lution contained in the representation-independent semiclas-
sical Ehrenfest method, without having the drawbacks of the
semiclassical Ehrenfest method.

IV.C. Accuracy for systems with conical intersections

Next, the relative overall accuracies of the semiclassical
trajectory methods are considered, and attention is focused

TABLE VIII. Average relative errors~%! for three YRH, nine MXH, and five MCH cases.

Method Repa

YRH ~weak coupling! MXH ~avoided crossing! MCH ~conical intersection!

Probsb Fractsc Overalld Probs Fracts Overall Probs Fracts Overall

ECP A 377 4 191 109 56 83 71 29 51
D 1016 30 523 146 57 101 101 23 62

CC 377 4 191 140 57 98 92 24 58
FS2 A 53 18 36 58 31 44 84 24 54

D 723 49 386 42 19 31 69 17 43
CC 53 18 36 54 30 42 65 18 41

FS1 A 43 15 29 67 39 53 80 26 53
D 548 29 289 58 26 42 69 16 43

CC 43 15 29 68 37 53 63 17 40
FSTU¹V A 31 19 25 54 32 43 85 27 56

D 230 26 128 35 19 27 68 16 42
CC 31 19 25 47 30 38 60 18 39

SE A/D/CC e e e 109 39 74 100 33 66
SCDM A 20 17 19 22 20 21 68 20 44

D 69 22 46 21 18 20 45 20 32
CC 20 17 19 24 19 22 43 19 31

CSDM A 21 18 20 21 19 20 63 21 42
D 41 22 32 20 18 19 47 20 33

CC 21 18 20 24 19 21 47 19 33

aElectronic representation; A5adiabatic, D5diabatic, and CC5Calaveras County.
bAverage of the errors forPR , PQ , andPN .
cAverage of the errors forFR , Eint8 , andEint9 .
dAverage of the errors for all six observables.
eThe SE method fails to predict any reactive or quenching trajectories for some YRH cases.
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on results obtained using the most accurate representation,
i.e., the CC representation. Of the surface hopping methods
~ECP, FS2, FS1, and FSTU¹V), the ECP method is the
least accurate method with an average overall error of 58%.
The ECP method differs from the three other methods~FS2,
FS1, and FSTU¹V) in three significant ways. First, it uses a
hopping probability based on integrating the classical path
equations coherently through regions of strong coupling,
whereas the other methods use a local hopping probability.
We have previously found that including regions of extended
coherence within the DM formalism~as in the CSDM
method! leads to improved results,89 and this aspect of the
ECP method may therefore be desirable. Second, surface
hops are allowed in the ECP algorithm only at regions of
maximal coupling. The other surface hopping methods allow
surface hops whenever the electronic state populations are
changing. Third, in the ECP method, the electronic state
populations are reinitialized after each strong coupling re-
gion, whereas in the other methods they are not. We have not
investigated which one of these differences causes the ECP
method to be systematically worse than the methods based
on the fewest-switches formalism.

The FS2, FS1, and FSTU¹V methods differ only in
their treatment of frustrated hops. For the MCH systems, all
three methods give similar results~with overall errors of
;40%!, and the FSTU¹V method is slightly more accurate.
For these cases, the number of successful hops is generally
greater than the number of frustrated hops when the CC rep-
resentation is used~see Table VI!, although the FSTU¹V
method does feature a fairly significant number of nonlocal
hops~2%–30% of trajectories experience at least one nonlo-
cal hop!. Nonetheless, the similar errors for all three methods
indicate that the treatment of frustrated hops is not the domi-
nant source of error for these systems.~The treatment of
frustrated hops is more significant in weak coupling cases
such as the YRH model systems.83,84!

As noted above, the SE method has the desirable feature
that it is independent of electronic representation. Unfortu-
nately, it is the least accurate method for the MCH cases with
an overall error of 66%. The DM formalism has been devel-
oped to retain the desirable features of the SE method, while
also incorporating surface-hopping-like physical final states.
For the MCH systems, the SCDM and CSDM methods~with
average errors of 31% and 33%, respectively! are twice as
accurate as the SE method and more accurate than the sur-
face hopping methods. The CSDM method, as mentioned
above, is also less dependent on the choice of electronic
representation~or, equivalently, the CSDM is more accurate
than the other methods when the non-CC representation is
used!, and therefore we conclude that the CSDM method is
the preferred semiclassical trajectory method for systems
with conical intersections.

These conclusions agree with earlier studies on the YRH
and MXH systems87,89 ~summarized in Table VIII!. There
and here, the DM methods are both more accurate and less
representation dependent than the surface hopping methods,
and while the SCDM and CSDM method have similar errors
when the CC representation is used, the CSDM method is the
least representation dependent of all the methods tested. It is

very encouraging that our conclusions drawn on the basis of
more weakly coupled YRH and MXH systems continue to
hold for the more strongly coupled MCH systems. The
CSDM method is therefore confirmed as the preferred semi-
classical trajectory method overall.

IV.D. The behavior of semiclassical trajectories
near conical intersections

In addition to providing an efficient means of modeling
large photochemical systems, semiclassical trajectories also
provide a means of studying chemical events in mechanistic
detail. This is especially interesting in the context of conical
intersections, where one can ask questions about what role
the CI plays in the nonadiabatic event. Therefore, we present
a general discussion of the behavior of semiclassical trajec-
tories near conical intersections.

Using the FSTU¹V and CSDM methods, we gathered
various statistics for the MCH cases. The trends for each of
the five cases are similar, and a detailed study is presented
for the SL parameterization only. We also consider the SL
parameterization of the MXH system for comparison. Note
that the MXH and MCH systems have identical diabatic po-
tential energy surfaces and differ only in their coupling; the
MXH system has an avoided crossing~AC!, and the MCH
system has a CI. For both cases, the~1.1,0! initial conditions
and identical numerical parameters for trajectory integration
are used.

Conical intersections are often implicated in experimen-
tally observed ultrafast~femtosecond! decay mechanisms. To
study this issue, the average delay timeTD for each trajec-
tory was computed as follows:164

TD5T2Rrel
i /Vrel

i 2Rrel
f /Vrel

f , ~18!

whereT is the total time for the scattering event, andRrel
x and

Vrel
x are the initial (x5 ‘ ‘ i ’ ’) and final (x5 ‘ ‘ f ’ ’) relative

center-of-mass distances and velocities, respectively, of the
atom-diatom fragments. The delay time is often negative for
these systems, as a consequence of the small-Rrel regions
excluded by the repulsive potential at small internuclear
distances.165

Histogram plots ofTD for both the MXH ~AC! and
MCH ~CI! SL parameterizations are shown in Fig. 4. The
one-standard-deviation~1s! Monte Carlo error bars for the
bins in Fig. 4 are less than 0.005. For the CSDM method
@Figs. 4~a! and 4~b!#, the distributions ofTD obtained using
the diabatic and adiabatic representations agree well with
each other, whereas the distributions for the FSTU¹V
method agree less well with each other. The diabatic
FSTU¹V results~which were shown to be more accurate in
Sec. IV.C! agree with the CDSM results for reactive trajec-
tories, but not for quenching trajectories. In general, the
MXH system has shorter~more negative, faster! delay times
than the MCH systems. The differences between the delay
times for the MXH and MCH systems are not dramatic, how-
ever.

This result may be compared with a wave packet study
by Stock and co-workers,67 where two-dimensional CI and
AC models were used to study excited-state decay. They
found that when the 2D system was coupled to an external
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bath, the CI system decayed much faster than the AC system,
and they observed and cited two reasons:~i! the CI captured
the wave packet more readily than the AC, and~ii ! the CI
more efficiently disposed of the wave packet after de-
excitation. This behavior has been anticipated and demon-
strated elsewhere.123,124When the 2D models were treated as
isolated systems~uncoupled to the bath!, the CI and AC sys-
tems displayed similar dynamics.

For the MCH systems, two degrees of freedom represent
the plane of the cone, and there is one additional ‘‘external’’
degree of freedom. It is interesting that this situation seems
to more closely resemble the uncoupled 2D model than the
coupled 2D model. For larger systems with more degrees of
freedom, the dynamical differences between the CI and AC
may become more pronounced. However, with more degrees
of freedom, there is also an increased probability that the
system may go ‘‘around’’ or ‘‘past’’ the cone, and it is not
clear how these effects compete for real systems. Further-
more, the 2D model CI that was studied74 was upright and
symmetric, as opposed to the sloped and asymmetric cone
that appears in the MCH systems. As mentioned above, up-
right cones are expected to more efficiently funnel wave
packets to the ground state than sloped cones.

It is interesting to study the two sources of enhanced CI
decay identified above more closely for the MCH and MXH
systems. To separate the two processes more clearly, the time
of the first and last hopping eventsTh

(1) andTh
(N) are used to

indicate the beginning and end of the interaction with the CI
or AC, respectively, and to define a set of three timestC , t I ,
and tD . The half-reaction delay timestC and tD correspond
to the capture and disposal processes identified above, andt I

is the time spent interacting with the CI or AC:

tC5Th
~1!2Rrel

i /Vrel
i , ~19!

t I5Th
~N!2Th

~1! , ~20!

and

tD5T2Th
~N!2Rrel

f /Vrel
f , ~21!

whereTD5tC1t I1tD . Due to the stochastic nature of the
surface hopping algorithm, only the ensemble averaged dis-
tributions of values of these quantities are meaningful. Note
that these definitions are not suitable for the diabatic repre-
sentation where trajectories may de-excite without hopping.

Table IX summarizes the average values ofTD , tC , t I ,
and tD for reactive and quenching trajectories for the SL
parameterizations of the MCH and MXH systems using the
adiabatic representation and the FSTU¹V method. The av-
erage capture timetC is similar for both systems and for both
kinds of events. The scattering trajectories have total ener-
gies of 1.1 eV, and both the energy of the MCH CI and the
energy of the excited state where the MXH energy gap is a
minimum is ;0.6 eV. Therefore, for both systems, the tra-
jectories have significant kinetic energy near the strong cou-

FIG. 4. Delay times for SL parameterizations of the MCH~solid! and MXH ~dashed! systems and for the~1.1,0! initial conditions for the adiabatic~triangles!
and diabatic~circles! representations. Results for the CSDM method are shown in panels~a! and~b!, and results for the FSTU¹V method are shown in panels
~c! and ~d!. Panels~a! and ~c! show reactive trajectories, and panels~b! and ~d! show quenching trajectories.

TABLE IX. Average delay times~fs! for the SL parameterizations of the
MXH ~AC! and MCH ~CI! systems.a

Final arrangement System ^TD&, fs ^tC&, fs ^t I&, fs ^tD&, fs

Reactive CI 2125 2123 39 241
AC 2137 2123 22 236

Quenching CI 2117 2129 56 244
AC 2119 2126 37 230

aFSTU¹V calculations in the adiabatic representation.
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pling region, and they do not have to rely on the shape of the
excited surface to draw them toward the strong coupling re-
gion. The capture effect that was observed in the 2D study
discussed above was for a system with small~0 K! initial
kinetic energy, where one would expect this effect to be more
significant.

There is a difference in the dynamics of the MXH and
MCH systems after the first surface hop. Our results confirm
that there is enhanced disposal of the trajectories after the
nonadiabatic event, but with a difference intD of only ;10
fs. The trajectories interact with the CI for;18 fs longer
than with the AC, and these two effects have opposite effects
on the overall delay timeTD . One may justify the increase
interaction timet I by noting that the smaller energy gap near
the CI creates a larger region of significant coupling than for
the AC system.

The magnitudes of these effects are small and will de-
pend on a variety of factors including the shape of the CI and
the conditions of the dynamics, and one must be careful in-
terpreting such small differences in the times for these model
systems. Furthermore, it may be more appropriate to define
the capture and disposal times based on criteria other than
hopping. As we are interested in only a qualitative dynamical
picture of the behavior of semiclassical trajectories near CIs,
we do not pursue a more detailed study of these processes,
but the discussion above is useful for understanding the cau-

tion that the presence of a CI need not cause a qualitative
difference in the dynamics.

Next, we consider how the semiclassical trajectories be-
have as they ‘‘funnel down’’ near the CI. In the simplest
model of dynamics near a CI, systems are depicted as de-
exciting directly via a steepest-descent path through the
cone. In Fig. 5, contour plots of the magnituded of the
nonadiabatic couplingd for collinear geometries are shown,
along with the geometries where the maximum valuedmax of
d is attained along 100 reactive and 100 quenching CSDM
trajectories.~Note: The trajectories were not constrained to
collinear geometries, so the correlation between the contours
and the magnitude ofd at the circles and diamonds is only
approximate.! The maximum ofd along a particular trajec-
tory represents the closest point along that trajectory to the
cone. Figure 5 shows similar trends in the adiabatic and di-
abatic representations; therefore, in the remainder of this sec-
tion only the diabatic results are discussed.

For the MCH system@Figs. 5~a! and 5~b!#, only 10% of
all trajectories have admax of less than 15a0

21, and only 4%
have admax of less than 5a0

21. The median value ofdmax is
;50a0

21. The seam of conical intersection is located at
RHC'1.94a0 and RMC'3.00a0 for M–C–H bond angles
from 100° to 180°. The average values and one-s standard
deviations of these distances atdmax ~for all trajectories! is

FIG. 5. Contour plot ofd with contour spacings 0.15, 0.5, 1.5, 5, 15, and 50a0
21 for the SL parameterizations of~a,b! MCH and~c,d! MXH. The maximum

contour for the MXH system is 5a0
21. Also shown are the geometries of maximumd for 100 reactive~circles! and 100 quenching~triangles! CSDM

trajectories propagated in the~a,c! adiabatic and~b,d! diabatic representations.
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1.9660.04 and 3.1860.39a0 , respectively. The distribution
is wider alongRMC @which has a sloped shape, see Fig. 3~b!#
than alongRHC @which has a peaked shape, see Fig. 3~b!#.

For the MXH system@Figs. 5~c! and 5~d!#, the maximum
value of d is ;6 a0

21, and the median value ofdmax is
;5 a0

21. Comparing the distributions of the locations of
dmax for the MXH and MCH systems, it can be seen that the
CI focuses the distribution ofdmax alongRHC but not along
RMC . One would expect less focusing alongRMC because
the cone in MCH systems is sloped in this direction. Further-
more, as discussed above, because of the significant kinetic
energy of the trajectories, the nuclear motion is likely not as
sensitive to the shape of the surfaces near the cone as, for
example, in those low-temperature photodissociation pro-
cesses where the Franck–Condon region is not significantly
higher in energy than the CI.

Finally, we note that for the MCH system, 84% of
quenching trajectories have admax of at least 15a0

21,
whereas 98% of reactive trajectories have admax in this
range, indicating a greater preference for trajectories to react
the more closely they pass by the cone.

V. CONCLUDING REMARKS

A family of five atom–diatom model systems was pre-
sented, and each system features a seam of conical intersec-
tions. Accurate quantum dynamics calculations were carried
out and used to test the performance of several surface hop-
ping methods, the semiclassical Ehrenfest method, and two
decay of mixing~DM! methods. The DM formalism is more
accurate than the surface hopping formalism; the best surface
hopping method (FSTU¹V) and the best DM methods
~SCDM and CSDM! have overall relative errors of 40% and
;30%, respectively. Furthermore, the CSDM method is less
dependent on the choice of electronic representation than the
other methods making it the preferred semiclassical trajec-
tory method for systems with conical intersections.

These conclusions agree with the results of previous
tests87,89 using a set of systems with avoided crossings and
weak coupling cases, and they add confidence to our recom-
mendation of the CSDM method for modeling coupled-states
dynamics.

The diabatic representation was shown to be the most
accurate representation for four of the five newly presented
systems, and the Calaveras County criterion for determining
which representation is more accurate was successfully ap-
plied in every case.

Finally, an analysis of the behavior of semiclassical tra-
jectories near conical intersections was presented. It was
found that the sloped cones in the present study do not sig-
nificantly enhance decay~as compared with a similar system
with an avoided crossing! but do affect product branching.
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